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1 Proofs
1.1 Proof of Theorem 2
Theorem 2. Ifin MDL-based model selection for exp-MHP,
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As in Eq. 22 in the paper, the negative log-likelihood can be
written in independent terms for each dimension. Therefore,
for each dimension 1 < ¢ < p we may define
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Hence, we have
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Thus, L¢ as defined above satisfies Eq. 2 as required. Algo-
rithm 2 summarizes the procedure for computing L (v,; ).
First, we compute the MDL estimator 9¢ for the ¢-th dimen-
sion by optimizing goodness-of-fit, which is a convex op-
timization problem by an appropriate choice of luckiness
function v, as discussed in subsection 4.3. Next, we esti-
mate the model complexity by using Algorithm 1. Finally,
we compute MDL objective as in Eq. 2. O

2 Experimental Setup

Here we provide more details to our experiments.

2.1 Synthetic Experiments

The comparison methods are estimation methods which
search for MHP kernel functions and baseline vector based
on the data. To extract a causal graph from such output,
based on Theorem 1, we put a threshold on the kernel norm
to distinguish zero and non-zero kernels. This threshold is
set to 0.01.

Each of the comparison methods has a set of hyper-
parameters like penalty and the level of regularization. For



ML, LS, and NPHC we have penalties: L1 (lasso), L2, elas-
tic net, and none. For ADM4 has lasso-nuclear. We evaluated
each of the baseline methods with all possible penalties, i.e.
for the set of possible values for

C € {1,2,5,10,20, 50, 100, 200, 500, 1000, 2000, 5000, ... }.

For ADM4, we use two hyperparameters, the penalization
parameter and the nuclear lasso ratio. Together we consid-
ered 5 times 10 cases, i.e. 50 different cases where the lasso-
nuclear-ratio was 0, 0.1, 05, 0.9, 1.

The reported numbers for “Random” in Table 1 are the
result of a random adjacency matrix with the same number
of non-zero entries as the average test case. We report the
highest F1 score achieved by each method based on different
hyper-parameters. As we do not perform train/test validation
and instead we take the highest F1, the validated F1 scores
for baseline methods would be presumably lower.

Information criteria (AIC, BIC, and HQ) generally do not
perform well for small data and it was the case also in our ex-
periments. These methods rely on reducing model loss (i.e.,
negative log-likelihood) for the price of adding new param-
eters to the model. The least price that these models suggest
for increasing the size of parameter set is about 1 unit of
log-likelihood, hence, these model selection methods allow
for adding any edge to the graph only if the log-likelihood
could be increased by at least 1 unit compared to the empty
graph model. This is not the case for a small data set ("short”
data), as the amount of log-likelihood that we have for the
naive model and also for the maximum-likelihood model are
both very small (of order 0.01 or 0.1 in all of our experimen-
tal settings), and therefore, the 1 unit improvement is not
possible, and this prevents the IC methods from discovering
any edge in the causal graph.

Our method is a MDL-based model selection with no
hyper-parameters, however, we can choose the number of
MC simulations NN for integral estimation, and the higher
N the better estimate. Limited by our computational re-
sources, we used 1000 iterations for default case (for dimen-
sion p = 7), and 500 iterations for the sparse graph scenario
(for dimension p = 20). As discussed in Section 4 in Sub-
section Amortization, we first do the MC simulations and
compute model complexity values, which takes about one
hour in each experimental setting (i.e., fixed p and T), and
then we perform 100 test runs, each taking a about ten sec-
onds.

2.2 Real-world Data

In our synthetic experiments we observed that for p = 7 and
T = 400 method ML outperformed the other baseline meth-
ods. Elastic net regularization was the best regularization for
ML in our synthetic experiments. So we ran this method on
the data for the set of levels for regularization as listed above,
and in all cases the bi-directed edge between US and Japan
as an edge of the causal graph was returned. This is not plau-
sible based on expert knowledge from the domain.



